What is a penicillium allergy


Group References

  1. Sevinc MS; Kumar V; Abebe M; Mohottalage S; Kumarathasan P; Vincent R; Vijay HMExpression and characterization of Pen b 26 allergen of Penicillium brevicompactum in Escherichia coli.Protein Expr Purif. 2009 May;65(1):8-14
  2. Sevinc,M.S.; Kumar,V.; Abebe,M.; Casley,W.L.; Vijay,H.M.; Isolation and Characterization of a cDNA Clone Encoding One IgE-Binding Fragment of Penicillium brevicompactum(er) Int.

    Arch. Allergy Immunol. 138 (1), 12-20 (2005)

  3. Sevinc MS; Kumar V; Abebe M; Lemieux M; Vijay HMIsolation, expression and characterization of a minor allergen from Penicillium crustosum.


Group Sequences

Species Common Allergen Type Length GI# Version
Penicillium brevicompactum Fungus Pen b 26.0101 Aero Fungi 107 59894749 7

Group Sequences

Species Common Allergen Type Length GI# Version
Penicillium brevicompactum Fungus Pen b 26.0101 Aero Fungi 107 59894749 7

Allergens

Id Species Common Name Definition Gi Accession Length Reference Year Adopted Sequence Header Actions
60 Oryza sativa Japonica Group Japanese rice 17kDa alpha-amylase/trypsin inhibitor 2; Ory s 17kD Q7X8H9.1 159 20731, 20729 2018 MALASDKFVLSAIVLAVLTVAAAAAGYGGYGDVGEYCRVGKAVSRNPVPSCRNYIARWCA VAGGRLDSGKQPPRQLLEPCCRELAAVPMQCRCDALSVLVRGVVTEEGDRVAGMISQHAA PGCDAATIAGMASALTDYGRCNLQHTGFFGCPMFGGGMD >accession|Q7X8H9.1|17kDa alpha-amylase/trypsin inhibitor 2; Ory s 17kD [Oryza sativa Japonica Group] ViewEditDelete
1,136 Anisakis simplex Parasitic fish worm Major allergen Ani s 1 precursor (Excretory gland allergen Ans1) (21 kDa allergen) 0047605452 Q7Z1K3.1 194 2072, 2073, 4544, 19175, 19176, 19177, 19425, 19426, 19427 2007 MASMQHFSLAALLLAASICLGDADRTECQLPLDKGTPCTQEGGVKPSVAWWHDDKSGICL SFKYTGCGGNANRFTTIKNCEQHCKMPDRGACALGKKPAEDSNGEQLVCAGMREDKCPNG YQCKMMAFMGLCCPTKEEELFAREYEGVCKSGKPVKMDRGSGWMMTILGKSCDDQFCPED AKCERGKLFANCCK >accession|Q7Z1K3.1|Allergen Major allergen Ani s 1 precursor (Excretory gland allergen Ans1) (21 kDa allergen) [Anisakis simplex] ViewEditDelete
61 Oryza sativa Japonica Group Japanese rice Cupincin; 52 kDa globulin-like protein; Ory s NRA Q852L2.2 470 20731, 20729 2018 MAKKKTSSSMARSQLAALLISLCFLSLASNAVGWSRRGEREEEDERRRHGGEGGRPYHLG EESFRHWTRTRHGRFSVLERFPDEQVVGAAVGGYRVAVLEAAPRAFLQPSHYDADEVFYV KEGEGVIVLLREGRRESFCVREGDAMVIPAGAIVYSANTHSSKWFRVVMLLNPVSTPGHF EEYFPVGGDRPESFFSAFSDDVLQAAFNTRREELEKVFERQREGGEITTAPEEQIRELSK SCSRGGGGGSGSEWEIKPSSLTGKSPYFSNNHGKLFELTGDECRHLKKLDLQIGLANITR GSMIAPNYNTRATKLAVVLQGSGYFEMACPHVSGGGSSERREREREHGRRREEEQGEEEH GERGEKARRYHKVRAQVREESVIVIPASHPATIVASEGESLAVVCFFVGANHDEKVFLAG RNSPLRQLDDPAKKLVFGGSAAREADRVLAAQPEQILLRGPHGRGSVSDM >accession|Q852L2.2|Cupincin; 52 kDa globulin-like protein; Ory s NRA [Oryza sativa Japonica Group] ViewEditDelete
1,257 Aspergillus fumigatus Fungus RecName: Full=Endo-chitosanase; Flags: Precursor 0074629604 Q875I9.1 238 2524, 20468, 20469, 20471, 20472, 20473, 20552 2016 MRLSEILTVALVTGATAYNLPNNLKQIYDKHKGKCSKVLAKGFTNGDASQGKSFSYCGDI PGAIFISSSKGYTNMDIDCDGANNSAGKCANDPSGQGETAFKSDVKKFGISDLDANIHPY VVFGNEDHSPKFKPQSHGMQPLSVMAVVCNGQLHYGIWGDTNGGVSTGEASISLADLCFP NEHLDGNHGHDPNDVLFIGFTSKDAVPGATAKWKAKNAKEFEDSIKSIGDKLVAGLKA >accession|Q875I9.1|Putative RecName: Full=Endo-chitosanase; Flags: Precursor [Aspergillus fumigatus] ViewEditDelete
1,258 Trichophyton schoenleinii Fungus RecName: Full=Subtilisin-like protease 6; AltName: Allergen=Tri m 2; Flags: Precursor 0074663809 Q8J077.1 405 1417, 2097 2012 FITKAIPIVLAALSAVNGAKILEAGPHAETIPNKYIVVMKKDVSDEAFSTHTTWLSQNLN RRLMRRSGSSKAMAGMQNKYSLGGIFRAYSGEFDDAMIKDISNHDDVDYIEPDFVVRTST NGTNLTRQENVPSWGLARVGSKQAGGTTYYYDSSAGKGVTAYVIDTGIDIEHEDFGGRAK WGKNFVDQRDEDCNGHGTHVAGTVGGTKYGLAKSVSLVAVKVLDCDGSGSNSGVIRGMEW AMREASGGGNGTAKAAGKSVMNMSLGGPRSQASNDAARAISEAGIFMAVAAGNENMDAQH SSPASEPSVCTVAASTEDDGKAEFSNYGAVVDVYAPGKDITSLKPGGSTDTLSGTSMASP HVCGLGAYLIGLGKQGGPGLCDTIKQMANEAIQRPGEGTTGKLIY >accession|Q8J077.1|Allergen RecName: Full=Subtilisin-like protease 6; AltName: Allergen=Tri m 2; Flags: Precursor [Trichophyton schoenleinii] ViewEditDelete
1,306 Aspergillus fumigatus Fungus 60S ribosomal protein L3 (Allergen Asp f 23) 0083305621 Q8NKF4.2 392 113 2007 MSHRKYEAPRHGSLAFLPRKRAARHRGKVKSFPKDDPKKPVHLTASMGYKAGMTTVVRDL DRPGAKMHKKEIVEAVTIIETPPLVAVGVVGYIETPRGLRSLTTVWAEHLSDEVKRRFYK NWYKSKKKAFTKYAKKHAEENGASITRELERIKKYCTVVRVLAHTQIRKTPLKQKKAHLM EIQVNGGSVADKVDFARNLFEKPIEIDSIFEKDEMIDVIAVTKGHGFQGVTSRWGTKKLP RKTHKGLRKVACIGAWHPSHVQWTVARAGQMGYHHRTSCNHKVFRIGKGSDEGNASTDFD ISKKQITPMGGFVRYGEVKNDYIMVKGSVPGVKKRVMTLRKTLYPQTSRRATEKVELKWI DTSSKFGHGAFQTPEEKRAFMGTLKKDLVTSA >accession|Q8NKF4.2|Putative 60S ribosomal protein L3 (Allergen Asp f 23) [Aspergillus fumigatus] ViewEditDelete
867 Salmo salar Salmon Parvalbumin beta 2 (Major allergen Sal s 1) 0018281421 Q91483.3 108 259, 2308 2007 MSFAGLNDADVAAALAACTAADSFNHKAFFAKVGLASKSSDDVKKAFYVIDQDKSGFIEE DELKLFLQNFSASARALTDAETKAFLADGDKDGDGMIGVDEFAAMIKG >accession|Q91483.3|Allergen Parvalbumin beta 2 (Major allergen Sal s 1) [Salmo salar] ViewEditDelete
819 Penicillium citrinum Fungus Heat shock 70 kDa protein (Allergen Pen c 19) 0014423733 Q92260.1 503 1101 2007 AYLGGTVNNAVITVPAYFNDSQRQATKDAGLIAGLNVLRIINEPTAAAIAYGLDKKTEGE RNVLIFDLGGGTFDVSLLTIEEGIFEVKSTAGDTHLGGEDFDNRLVNHFVNEFKRKHKKD LTTNARALRRLRTACERAKRTLSSAAQTSIEIDSLFEGIDFYTSITRARFEELCQDLFRG TMEPVERVLRDAKIDKSSVHEIVLVGGSTRIPKIQKLVSDFFNKDANKSINPDEAVAYGA AVQAAILSGDTSSKSTNEILLLDVAPLSLGIETAGGVMTPLIKRNTTIPTKKSETFSTYS DNQPGVLIQVFEGERARTKDNNLLGKFELTGIPPAPRGVPQIEVTFDLDANGIMNVSASE KGTGKSNKITITNDKGRLSKEEIERMLAEAEKYKAEDEAEASRIQAKNGLESYAYSLKNT ITEGKLQMSDDDKKKIEDKISEIISWLDNNQTAEKDEYESQQKELEAIANPIMQAAYGAA GGAPPQQRADGETEEKKDEEELD >accession|Q92260.1|Putative Heat shock 70 kDa protein (Allergen Pen c 19) [Penicillium citrinum] ViewEditDelete
1,308 Aspergillus fumigatus Fungus Superoxide dismutase [Mn], mitochondrial precursor (Allergen Asp f 6) 0083305645 Q92450.3 210 926, 2111, 2112, 2113, 2509 2007 MSQQYTLPPLPYPYDALQPYISQQIMELHHKKHHQTYVNGLNAALEAQKKAAEANDVPKL VSVQQAIKFNGGGHINHSLFWKNLAPEKSGGGKIDQAPVLKAAIEQRWGSFDKFKDAFNT TLLGIQGSGWGWLVTDGPKGKLDITTTHDQDPVTGAAPVFGVDMWEHAYYLQYLNDKASY AKGIWNVINWAEAENRYIAGDKGGHPFMKL >accession|Q92450.3|Allergen Superoxide dismutase [Mn], mitochondrial precursor (Allergen Asp f 6) [Aspergillus fumigatus] ViewEditDelete
1,319 Oryza sativa Rice Lactoylglutathione lyase (Methylglyoxalase) (Aldoketomutase) (Glyoxalase I) (Glx I) (Ketone-aldehyde mutase) (S-D-lactoylglutathione methylglyoxal lyase) (Allergen Ory s ?) (Allergen Glb33) (PP33) 0084029333 Q948T6.2 291 2 2007 MASGSEAEKSPEVVLEWPKKDKKRLLHAVYRVGDLDRTIKCYTECFGMKLLRKRDVPEEK YTNAFLGFGPEDTNFALELTYNYGVDKYDIGAGFGHFAIATEDVYKLAEKIKSSCCCKIT REPGPVKGGSTVIAFAQDPDGYMFELIQRGPTPEPLCQVMLRVGDLDRSIKFYEKALGMK LLRKKDVPDYKYTIAMLGYADEDKTTVIELTYNYGVTEYTKGNAYAQVAIGTEDVYKSAE AVELVTKELGGKILRQPGPLPGLNTKIASFLDPDGWKVVLVDNADFLKELQ >accession|Q948T6.2|Putative Lactoylglutathione lyase (Methylglyoxalase) (Aldoketomutase) (Glyoxalase I) (Glx I) (Ketone-aldehyde mutase) (S-D-lactoylglutathione methylglyoxal lyase) (Allergen Ory s ?) (Allergen Glb33) (PP33) [Oryza sativa] ViewEditDelete
1,278 Ananas comosus Pineapple RecName: Full=Profilin; AltName: Full=Minor food allergen Ana c 1; AltName: Allergen=Ana c 1 0075306610 Q94JN2.1 131 2059 2010 MSWQAYVDDHLMCEIDGQHLSSAAILGHDSTVWAQSPNFPQFKPEEISAILNDFENPGSL APTGLYLGGTKYMVIQGEPGVVIRGKKGTGGITVKKTNLALIIGVYDEPMTPGQCNMVVE RLGDYLLEQGF >accession|Q94JN2.1|Putative RecName: Full=Profilin; AltName: Full=Minor food allergen Ana c 1; AltName: Allergen=Ana c 1 [Ananas comosus] ViewEditDelete
1,302 Aspergillus fumigatus Fungus Enolase (2-phosphoglycerate dehydratase) (2-phospho-D-glycerate hydro-lyase) (Allergen Asp f 22) 0083288046 Q96X30.3 438 2116 2007 MPISKIHARSVYDSRGNPTVEVDVVTETGLHRAIVPSGASTGQHEAHELRDGDKTQWGGK GVLKAVKNVNETIGPALIKENIDVKDQSKVDEFLNKLDGTANKSNLGANAILGVSLAVAK AGAAEKGVPLYAHISDLAGTKKPYVLPVPFQNVLNGGSHAGGRLAFQEFMIVPDSAPSFS EALRQGAEVYQKLKALAKKKYGQSAGNVGDEGGVAPDIQTAEEALDLITEAIEQAGYTGK IKIAMDVASSEFYKADVKKYDLDFKNPESDPSKWLTYEQLADLYKSLAAKYPIVSIEDPF AEDDWEAWSYFYKTSDFQIVGDDLTVTNPGRIKKAIELKSCNALLLKVNQIGTLTESIQA AKDSYADNWGVMVSHRSGETEDVTIADIAVGLRSGQIKTGAPCRSERLAKLNQILRIEEE LGENAVYAGSKFRTAVNL >accession|Q96X30.3|Putative Enolase (2-phosphoglycerate dehydratase) (2-phospho-D-glycerate hydro-lyase) (Allergen Asp f 22) [Aspergillus fumigatus] ViewEditDelete
62 Protobothrops mucrosquamatus Snake Venom Snake venom serine protease serpentokallikrein-2; Q9DG84.1 257 20769 2018 MVLIRVLANLLILQLSYAQKSSELVIGGDECNINEHPFLVLVYYDDYQCGGTLINEEWVL TAAHCNGENMEIYLGMHSKKVPNKDRRRRVPKEKFFCDSSKNYTKWNKDIMLIRLNRPVR KSAHIAPLSLPSSPPSVGSVCRIMGWGTISPTKVTLPDVPRCANINLLDYEVCRAVYPEL PATSRTLCAGILEGGKDSCGGDSGGPLICNGQFQGIVSWGGDPCAQPHEPGLYTNVFDHL DWIKGIIAGNTDVTCPL >accession|Q9DG84.1|Snake venom serine protease serpentokallikrein-2 [Protobothrops mucrosquamatus] ViewEditDelete
1,021 Malus x domestica Apple Thaumatin-like protein 1a precursor (Allergen Mal d 2) (Mdtl1) (Pathogenesis-related protein 5a) (PR-5a) 0030316292 Q9FSG7.1 246 139, 2254, 3283, 3284, 19152, 19153 2008 MMKSQVASLLGLTLAILFFSGAHAAKITFTNNCPNTVWPGTLTGDQKPQLSLTGFELASK ASRSVDAPSPWSGRFWGRTRCSTDAAGKFTCETADCGSGQVACNGAGAVPPATLVEITIA ANGGQDYYDVSLVDGFNLPMSVAPQGGTGECKPSSCPANVNKVCPAPLQVKAADGSVISC KSACLAFGDSKYCCTPPNNTPETCPPTEYSEIFEKQCPQAYSYAYDDKNSTFTCSGGPDY VITFCP >accession|Q9FSG7.1|Putative Thaumatin-like protein 1a precursor (Allergen Mal d 2) (Mdtl1) (Pathogenesis-related protein 5a) (PR-5a) [Malus x domestica] ViewEditDelete
816 Alternaria alternata Fungus Enolase (2-phosphoglycerate dehydratase) (2-phospho-D-glycerate hydro-lyase) (Major allergen Alt a 11) (Alt a XI) 0014423684 Q9HDT3.2 438 968, 1450 2007 MTITKIHARSVYDSRGNPTVEVDIVTETGLHRAIVPSGASTGSHEACELRDGDKSKWGGK GVTKAVANVNDTIAPALIKEKLDVKDQSAVDAFLNKLDGTTNKTNLGANAILGVSMAIAK AAAAEKGVPLYAHISDLAGTKKPYVLPVPFQNVLNGGSHAGGRLAFQEFMIVPCEAPTFS EAMRQGAEVYQKLKALAKKTYGQSAGNVGDEGGVAPDIQTAEEALDLITKAIEEAGYTGK IKIAMDVASSEFYKADEKKYDLDFKNPDSDKSKWLTYEQLAEMYKSLAEKYPIVSIEDPF AEDDWEAWSYFFKTYDGQIVGDDLTVTNPEFIKKAIELKSCNALLLKVNQIGTITEAIQA AKDAFGAGWGVMVSHRSGETEDVTIADIVVGLRSGQIKTGAPARSERLAKLNQILRIEEE LGDNAVYAGNNFRTAVNL >accession|Q9HDT3.2|Putative Enolase (2-phosphoglycerate dehydratase) (2-phospho-D-glycerate hydro-lyase) (Major allergen Alt a 11) (Alt a XI) [Alternaria alternata] ViewEditDelete
1,157 Juniperus virginiana Red cedar Pathogenesis-related protein precursor (Potential major pollen allergen Jun v 3) 0051316532 Q9LD79.2 110 925, 954, 1434 2007 AFLLAATLTISSHMQEAGAVKFDIKNQCGYTVWAAGLPGGGKRLDQGQTWTVNLAAGTAS ARFWGRTGCTFDASGKGSCQTGDCGRQLSCTVSGAVPATLAEYTQSDQDY >accession|Q9LD79.2|Putative Pathogenesis-related protein precursor (Potential major pollen allergen Jun v 3) [Juniperus virginiana] ViewEditDelete
817 Hevea brasiliensis Para rubber tree Enolase 2 (2-phosphoglycerate dehydratase 2) (2-phospho-D-glycerate hydro-lyase 2) (Allergen Hev b 9) 0014423687 Q9LEI9.1 445 920, 2344, 2417 2009 MAITIVSVRARQIFDSRGNPTVEADVKLSDGYLARAAVPRGASTGIYEALELRDGGSDYL GKGVSKAVENVNIIIGPALVGKDPTDQVGIDNFMVQQLDGTVNEWGWCKQKLGANAILAV SLAVCKAGAHVKGIPLYKHVANLAGNKNLVLPVPAFNVINGGSHAGNKLAMQEFMILPVG ASSFKEAMKMGAEVYHHLKSVIKKKYGQDATNVGDEGGFAPNIQENKEGLELLKTAIAKA GYTGKVVIGMDVAASEFYGSDKTYDLNFKEENNNGSQKISGDVLKDLYKSFVTEYPIVSI EDPFDQDDWEHYAKLTSEIGVKVQIVGDDLLVTNPKRVEKAIKEKACNALLLKVNQIGSV TESIEAVKMSKRAGWGVMASHRSGETEDTFIADLSVGLATGQIKTGAPCRSERLAKYNQL LRIEEELGAEAVYAGANFRTPVEPY >accession|Q9LEI9.1|Putative Enolase 2 (2-phosphoglycerate dehydratase 2) (2-phospho-D-glycerate hydro-lyase 2) (Allergen Hev b 9) [Hevea brasiliensis] ViewEditDelete
820 Malus x domestica Apple Non-specific lipid-transfer protein precursor (LTP) (Allergen Mal d 3) 0014423814 Q9M5X7.1 115 2255, 2377 2009 MASSAVTKLALVVALCMAVSVAHAITCGQVTSSLAPCIGYVRSGGAVPPACCNGIRTING LARTTADRQTACNCLKNLAGSISGVNPNNAAGLPGKCGVNVPYKISTSTNCATVK >accession|Q9M5X7.1|Allergen Non-specific lipid-transfer protein precursor (LTP) (Allergen Mal d 3) [Malus x domestica] ViewEditDelete
826 Anisakis simplex Parasitic fish worm Tropomyosin (Allergen Ani s 3) 0014423976 Q9NAS5.1 284 202, 7744, 7747, 18608, 19169 2007 MDAIKKKMQAMKIEKDNALDRADAAEEKVRQMTDKLERIEEELRDTQKKMMQTENDLDKA QEDLSTANSNLEEKEKKVQEAEAEVAALNRRMTLLEEELERAEERLKLATAKLEEATHTA DESERVRKVMENRSFQDEERANTVESQLKEAQMLAEEADRKYDEVARKLTMVEADLERAE ERAETGENKIVELEEELRVVGNNLKSLEVSEEKALQREDSYEEQIRTVSARLKEAETRAE FAERSVQKLQKEVDRLEDELVHEKERYKSISEELDQTFQELSGY >accession|Q9NAS5.1|Putative Tropomyosin (Allergen Ani s 3) [Anisakis simplex] ViewEditDelete
1,106 Anisakis simplex Parasitic fish worm Paramyosin (Allergen Ani s 2) 0042559536 Q9NJA9.1 869 1126, 19176, 19425, 19427 2009 MSDTLYRSPSMAIRSSTADMGALTSMSVADLGSLTRLEDKIRLLQDDFESERELRNRIER ERADLSVQLIALTDRLQDAECATDSQIESNRKREVELSKLRKLLEESQLENEDAMNVLRK KHQDVCLDYTEQIEQLQKKNSKIDRERQRLQHEVIELTATIDQLQKDKHVAEKMAQKFEQ QTIELSNKVEDLNKHVNDLAQQRQRLQAENSDLLAEIHDQKVQLDNLQHVKYQLAQQLEE SRRRLEDAERERSQMQAQLHQVQLELDSVRVALDEESAARVEAEHKLSLANTEITQWKSK FDAEVALHHEEVEDLRKKMMQKQAEYEEQIEIMLQKVSQLEKAKARLQSEVEVLIVDLEK AQNTIAILERAKEQLEKQVLEMKSRIDELLVELEAAQREARAALAELQKMKQLYEKAVEQ KEALARENKKLQDDLHEANEALADANRKLHELDLENARLAGEIRDLQVALKESEAARRDA EARAQRALAELQQVRIEMERRLQEKEEEMEALRKSMQFEIDRLTAALADAEARMKAEIAR LRKKYQAEIAELEMTVDNLNRANLEAQKTIKKQSEQIIQLQANLEDTQRQLQQTLDQYAL AQRKISALSAELEECKTALDNAIRARKQAEADLEEAHVRISDLTSINSNLTAIKNKLETE LSTAQADLDEVTKELHAADERANRALADAARAVQELHEEQEHSMKIDALRKSLEEQVKQL QVQIQEAEAAALLGGKRVIAKLETRIRDLEVALDEETRRHKETQSALRKKDRRIKEVQMQ IDEEHKMFVMAQDTADRMLEKLNIQKRQLGEAEAMTMQNLQRVRRYQRELEDAEGRADQA ESSLNLIRAKHRGTVAVGKATDVYVVEED >accession|Q9NJA9.1|Putative Paramyosin (Allergen Ani s 2) [Anisakis simplex] ViewEditDelete

Page 103 of 105, showing 20 record(s) out of 2,087 total

2019
Volume 22
Issue 1

Topic:

Group Sequences
Species Common Allergen Type Length GI# Version
Penicillium brevicompactum Fungus Pen b 26.0101 Aero Fungi 107 59894749 7

Group Sequences

Species Common Allergen Type Length GI# Version
Penicillium brevicompactum Fungus Pen b 26.0101 Aero Fungi 107 59894749 7

Allergens

Id Species Common Name Definition Gi Accession Length Reference Year Adopted Sequence Header Actions
60 Oryza sativa Japonica Group Japanese rice 17kDa alpha-amylase/trypsin inhibitor 2; Ory s 17kD Q7X8H9.1 159 20731, 20729 2018 MALASDKFVLSAIVLAVLTVAAAAAGYGGYGDVGEYCRVGKAVSRNPVPSCRNYIARWCA VAGGRLDSGKQPPRQLLEPCCRELAAVPMQCRCDALSVLVRGVVTEEGDRVAGMISQHAA PGCDAATIAGMASALTDYGRCNLQHTGFFGCPMFGGGMD >accession|Q7X8H9.1|17kDa alpha-amylase/trypsin inhibitor 2; Ory s 17kD [Oryza sativa Japonica Group] ViewEditDelete
1,136 Anisakis simplex Parasitic fish worm Major allergen Ani s 1 precursor (Excretory gland allergen Ans1) (21 kDa allergen) 0047605452 Q7Z1K3.1 194 2072, 2073, 4544, 19175, 19176, 19177, 19425, 19426, 19427 2007 MASMQHFSLAALLLAASICLGDADRTECQLPLDKGTPCTQEGGVKPSVAWWHDDKSGICL SFKYTGCGGNANRFTTIKNCEQHCKMPDRGACALGKKPAEDSNGEQLVCAGMREDKCPNG YQCKMMAFMGLCCPTKEEELFAREYEGVCKSGKPVKMDRGSGWMMTILGKSCDDQFCPED AKCERGKLFANCCK >accession|Q7Z1K3.1|Allergen Major allergen Ani s 1 precursor (Excretory gland allergen Ans1) (21 kDa allergen) [Anisakis simplex] ViewEditDelete
61 Oryza sativa Japonica Group Japanese rice Cupincin; 52 kDa globulin-like protein; Ory s NRA Q852L2.2 470 20731, 20729 2018 MAKKKTSSSMARSQLAALLISLCFLSLASNAVGWSRRGEREEEDERRRHGGEGGRPYHLG EESFRHWTRTRHGRFSVLERFPDEQVVGAAVGGYRVAVLEAAPRAFLQPSHYDADEVFYV KEGEGVIVLLREGRRESFCVREGDAMVIPAGAIVYSANTHSSKWFRVVMLLNPVSTPGHF EEYFPVGGDRPESFFSAFSDDVLQAAFNTRREELEKVFERQREGGEITTAPEEQIRELSK SCSRGGGGGSGSEWEIKPSSLTGKSPYFSNNHGKLFELTGDECRHLKKLDLQIGLANITR GSMIAPNYNTRATKLAVVLQGSGYFEMACPHVSGGGSSERREREREHGRRREEEQGEEEH GERGEKARRYHKVRAQVREESVIVIPASHPATIVASEGESLAVVCFFVGANHDEKVFLAG RNSPLRQLDDPAKKLVFGGSAAREADRVLAAQPEQILLRGPHGRGSVSDM >accession|Q852L2.2|Cupincin; 52 kDa globulin-like protein; Ory s NRA [Oryza sativa Japonica Group] ViewEditDelete
1,257 Aspergillus fumigatus Fungus RecName: Full=Endo-chitosanase; Flags: Precursor 0074629604 Q875I9.1 238 2524, 20468, 20469, 20471, 20472, 20473, 20552 2016 MRLSEILTVALVTGATAYNLPNNLKQIYDKHKGKCSKVLAKGFTNGDASQGKSFSYCGDI PGAIFISSSKGYTNMDIDCDGANNSAGKCANDPSGQGETAFKSDVKKFGISDLDANIHPY VVFGNEDHSPKFKPQSHGMQPLSVMAVVCNGQLHYGIWGDTNGGVSTGEASISLADLCFP NEHLDGNHGHDPNDVLFIGFTSKDAVPGATAKWKAKNAKEFEDSIKSIGDKLVAGLKA >accession|Q875I9.1|Putative RecName: Full=Endo-chitosanase; Flags: Precursor [Aspergillus fumigatus] ViewEditDelete
1,258 Trichophyton schoenleinii Fungus RecName: Full=Subtilisin-like protease 6; AltName: Allergen=Tri m 2; Flags: Precursor 0074663809 Q8J077.1 405 1417, 2097 2012 FITKAIPIVLAALSAVNGAKILEAGPHAETIPNKYIVVMKKDVSDEAFSTHTTWLSQNLN RRLMRRSGSSKAMAGMQNKYSLGGIFRAYSGEFDDAMIKDISNHDDVDYIEPDFVVRTST NGTNLTRQENVPSWGLARVGSKQAGGTTYYYDSSAGKGVTAYVIDTGIDIEHEDFGGRAK WGKNFVDQRDEDCNGHGTHVAGTVGGTKYGLAKSVSLVAVKVLDCDGSGSNSGVIRGMEW AMREASGGGNGTAKAAGKSVMNMSLGGPRSQASNDAARAISEAGIFMAVAAGNENMDAQH SSPASEPSVCTVAASTEDDGKAEFSNYGAVVDVYAPGKDITSLKPGGSTDTLSGTSMASP HVCGLGAYLIGLGKQGGPGLCDTIKQMANEAIQRPGEGTTGKLIY >accession|Q8J077.1|Allergen RecName: Full=Subtilisin-like protease 6; AltName: Allergen=Tri m 2; Flags: Precursor [Trichophyton schoenleinii] ViewEditDelete
1,306 Aspergillus fumigatus Fungus 60S ribosomal protein L3 (Allergen Asp f 23) 0083305621 Q8NKF4.2 392 113 2007 MSHRKYEAPRHGSLAFLPRKRAARHRGKVKSFPKDDPKKPVHLTASMGYKAGMTTVVRDL DRPGAKMHKKEIVEAVTIIETPPLVAVGVVGYIETPRGLRSLTTVWAEHLSDEVKRRFYK NWYKSKKKAFTKYAKKHAEENGASITRELERIKKYCTVVRVLAHTQIRKTPLKQKKAHLM EIQVNGGSVADKVDFARNLFEKPIEIDSIFEKDEMIDVIAVTKGHGFQGVTSRWGTKKLP RKTHKGLRKVACIGAWHPSHVQWTVARAGQMGYHHRTSCNHKVFRIGKGSDEGNASTDFD ISKKQITPMGGFVRYGEVKNDYIMVKGSVPGVKKRVMTLRKTLYPQTSRRATEKVELKWI DTSSKFGHGAFQTPEEKRAFMGTLKKDLVTSA >accession|Q8NKF4.2|Putative 60S ribosomal protein L3 (Allergen Asp f 23) [Aspergillus fumigatus] ViewEditDelete
867 Salmo salar Salmon Parvalbumin beta 2 (Major allergen Sal s 1) 0018281421 Q91483.3 108 259, 2308 2007 MSFAGLNDADVAAALAACTAADSFNHKAFFAKVGLASKSSDDVKKAFYVIDQDKSGFIEE DELKLFLQNFSASARALTDAETKAFLADGDKDGDGMIGVDEFAAMIKG >accession|Q91483.3|Allergen Parvalbumin beta 2 (Major allergen Sal s 1) [Salmo salar] ViewEditDelete
819 Penicillium citrinum Fungus Heat shock 70 kDa protein (Allergen Pen c 19) 0014423733 Q92260.1 503 1101 2007 AYLGGTVNNAVITVPAYFNDSQRQATKDAGLIAGLNVLRIINEPTAAAIAYGLDKKTEGE RNVLIFDLGGGTFDVSLLTIEEGIFEVKSTAGDTHLGGEDFDNRLVNHFVNEFKRKHKKD LTTNARALRRLRTACERAKRTLSSAAQTSIEIDSLFEGIDFYTSITRARFEELCQDLFRG TMEPVERVLRDAKIDKSSVHEIVLVGGSTRIPKIQKLVSDFFNKDANKSINPDEAVAYGA AVQAAILSGDTSSKSTNEILLLDVAPLSLGIETAGGVMTPLIKRNTTIPTKKSETFSTYS DNQPGVLIQVFEGERARTKDNNLLGKFELTGIPPAPRGVPQIEVTFDLDANGIMNVSASE KGTGKSNKITITNDKGRLSKEEIERMLAEAEKYKAEDEAEASRIQAKNGLESYAYSLKNT ITEGKLQMSDDDKKKIEDKISEIISWLDNNQTAEKDEYESQQKELEAIANPIMQAAYGAA GGAPPQQRADGETEEKKDEEELD >accession|Q92260.1|Putative Heat shock 70 kDa protein (Allergen Pen c 19) [Penicillium citrinum] ViewEditDelete
1,308 Aspergillus fumigatus Fungus Superoxide dismutase [Mn], mitochondrial precursor (Allergen Asp f 6) 0083305645 Q92450.3 210 926, 2111, 2112, 2113, 2509 2007 MSQQYTLPPLPYPYDALQPYISQQIMELHHKKHHQTYVNGLNAALEAQKKAAEANDVPKL VSVQQAIKFNGGGHINHSLFWKNLAPEKSGGGKIDQAPVLKAAIEQRWGSFDKFKDAFNT TLLGIQGSGWGWLVTDGPKGKLDITTTHDQDPVTGAAPVFGVDMWEHAYYLQYLNDKASY AKGIWNVINWAEAENRYIAGDKGGHPFMKL >accession|Q92450.3|Allergen Superoxide dismutase [Mn], mitochondrial precursor (Allergen Asp f 6) [Aspergillus fumigatus] ViewEditDelete
1,319 Oryza sativa Rice Lactoylglutathione lyase (Methylglyoxalase) (Aldoketomutase) (Glyoxalase I) (Glx I) (Ketone-aldehyde mutase) (S-D-lactoylglutathione methylglyoxal lyase) (Allergen Ory s ?) (Allergen Glb33) (PP33) 0084029333 Q948T6.2 291 2 2007 MASGSEAEKSPEVVLEWPKKDKKRLLHAVYRVGDLDRTIKCYTECFGMKLLRKRDVPEEK YTNAFLGFGPEDTNFALELTYNYGVDKYDIGAGFGHFAIATEDVYKLAEKIKSSCCCKIT REPGPVKGGSTVIAFAQDPDGYMFELIQRGPTPEPLCQVMLRVGDLDRSIKFYEKALGMK LLRKKDVPDYKYTIAMLGYADEDKTTVIELTYNYGVTEYTKGNAYAQVAIGTEDVYKSAE AVELVTKELGGKILRQPGPLPGLNTKIASFLDPDGWKVVLVDNADFLKELQ >accession|Q948T6.2|Putative Lactoylglutathione lyase (Methylglyoxalase) (Aldoketomutase) (Glyoxalase I) (Glx I) (Ketone-aldehyde mutase) (S-D-lactoylglutathione methylglyoxal lyase) (Allergen Ory s ?) (Allergen Glb33) (PP33) [Oryza sativa] ViewEditDelete
1,278 Ananas comosus Pineapple RecName: Full=Profilin; AltName: Full=Minor food allergen Ana c 1; AltName: Allergen=Ana c 1 0075306610 Q94JN2.1 131 2059 2010 MSWQAYVDDHLMCEIDGQHLSSAAILGHDSTVWAQSPNFPQFKPEEISAILNDFENPGSL APTGLYLGGTKYMVIQGEPGVVIRGKKGTGGITVKKTNLALIIGVYDEPMTPGQCNMVVE RLGDYLLEQGF >accession|Q94JN2.1|Putative RecName: Full=Profilin; AltName: Full=Minor food allergen Ana c 1; AltName: Allergen=Ana c 1 [Ananas comosus] ViewEditDelete
1,302 Aspergillus fumigatus Fungus Enolase (2-phosphoglycerate dehydratase) (2-phospho-D-glycerate hydro-lyase) (Allergen Asp f 22) 0083288046 Q96X30.3 438 2116 2007 MPISKIHARSVYDSRGNPTVEVDVVTETGLHRAIVPSGASTGQHEAHELRDGDKTQWGGK GVLKAVKNVNETIGPALIKENIDVKDQSKVDEFLNKLDGTANKSNLGANAILGVSLAVAK AGAAEKGVPLYAHISDLAGTKKPYVLPVPFQNVLNGGSHAGGRLAFQEFMIVPDSAPSFS EALRQGAEVYQKLKALAKKKYGQSAGNVGDEGGVAPDIQTAEEALDLITEAIEQAGYTGK IKIAMDVASSEFYKADVKKYDLDFKNPESDPSKWLTYEQLADLYKSLAAKYPIVSIEDPF AEDDWEAWSYFYKTSDFQIVGDDLTVTNPGRIKKAIELKSCNALLLKVNQIGTLTESIQA AKDSYADNWGVMVSHRSGETEDVTIADIAVGLRSGQIKTGAPCRSERLAKLNQILRIEEE LGENAVYAGSKFRTAVNL >accession|Q96X30.3|Putative Enolase (2-phosphoglycerate dehydratase) (2-phospho-D-glycerate hydro-lyase) (Allergen Asp f 22) [Aspergillus fumigatus] ViewEditDelete
62 Protobothrops mucrosquamatus Snake Venom Snake venom serine protease serpentokallikrein-2; Q9DG84.1 257 20769 2018 MVLIRVLANLLILQLSYAQKSSELVIGGDECNINEHPFLVLVYYDDYQCGGTLINEEWVL TAAHCNGENMEIYLGMHSKKVPNKDRRRRVPKEKFFCDSSKNYTKWNKDIMLIRLNRPVR KSAHIAPLSLPSSPPSVGSVCRIMGWGTISPTKVTLPDVPRCANINLLDYEVCRAVYPEL PATSRTLCAGILEGGKDSCGGDSGGPLICNGQFQGIVSWGGDPCAQPHEPGLYTNVFDHL DWIKGIIAGNTDVTCPL >accession|Q9DG84.1|Snake venom serine protease serpentokallikrein-2 [Protobothrops mucrosquamatus] ViewEditDelete
1,021 Malus x domestica Apple Thaumatin-like protein 1a precursor (Allergen Mal d 2) (Mdtl1) (Pathogenesis-related protein 5a) (PR-5a) 0030316292 Q9FSG7.1 246 139, 2254, 3283, 3284, 19152, 19153 2008 MMKSQVASLLGLTLAILFFSGAHAAKITFTNNCPNTVWPGTLTGDQKPQLSLTGFELASK ASRSVDAPSPWSGRFWGRTRCSTDAAGKFTCETADCGSGQVACNGAGAVPPATLVEITIA ANGGQDYYDVSLVDGFNLPMSVAPQGGTGECKPSSCPANVNKVCPAPLQVKAADGSVISC KSACLAFGDSKYCCTPPNNTPETCPPTEYSEIFEKQCPQAYSYAYDDKNSTFTCSGGPDY VITFCP >accession|Q9FSG7.1|Putative Thaumatin-like protein 1a precursor (Allergen Mal d 2) (Mdtl1) (Pathogenesis-related protein 5a) (PR-5a) [Malus x domestica] ViewEditDelete
816 Alternaria alternata Fungus Enolase (2-phosphoglycerate dehydratase) (2-phospho-D-glycerate hydro-lyase) (Major allergen Alt a 11) (Alt a XI) 0014423684 Q9HDT3.2 438 968, 1450 2007 MTITKIHARSVYDSRGNPTVEVDIVTETGLHRAIVPSGASTGSHEACELRDGDKSKWGGK GVTKAVANVNDTIAPALIKEKLDVKDQSAVDAFLNKLDGTTNKTNLGANAILGVSMAIAK AAAAEKGVPLYAHISDLAGTKKPYVLPVPFQNVLNGGSHAGGRLAFQEFMIVPCEAPTFS EAMRQGAEVYQKLKALAKKTYGQSAGNVGDEGGVAPDIQTAEEALDLITKAIEEAGYTGK IKIAMDVASSEFYKADEKKYDLDFKNPDSDKSKWLTYEQLAEMYKSLAEKYPIVSIEDPF AEDDWEAWSYFFKTYDGQIVGDDLTVTNPEFIKKAIELKSCNALLLKVNQIGTITEAIQA AKDAFGAGWGVMVSHRSGETEDVTIADIVVGLRSGQIKTGAPARSERLAKLNQILRIEEE LGDNAVYAGNNFRTAVNL >accession|Q9HDT3.2|Putative Enolase (2-phosphoglycerate dehydratase) (2-phospho-D-glycerate hydro-lyase) (Major allergen Alt a 11) (Alt a XI) [Alternaria alternata] ViewEditDelete
1,157 Juniperus virginiana Red cedar Pathogenesis-related protein precursor (Potential major pollen allergen Jun v 3) 0051316532 Q9LD79.2 110 925, 954, 1434 2007 AFLLAATLTISSHMQEAGAVKFDIKNQCGYTVWAAGLPGGGKRLDQGQTWTVNLAAGTAS ARFWGRTGCTFDASGKGSCQTGDCGRQLSCTVSGAVPATLAEYTQSDQDY >accession|Q9LD79.2|Putative Pathogenesis-related protein precursor (Potential major pollen allergen Jun v 3) [Juniperus virginiana] ViewEditDelete
817 Hevea brasiliensis Para rubber tree Enolase 2 (2-phosphoglycerate dehydratase 2) (2-phospho-D-glycerate hydro-lyase 2) (Allergen Hev b 9) 0014423687 Q9LEI9.1 445 920, 2344, 2417 2009 MAITIVSVRARQIFDSRGNPTVEADVKLSDGYLARAAVPRGASTGIYEALELRDGGSDYL GKGVSKAVENVNIIIGPALVGKDPTDQVGIDNFMVQQLDGTVNEWGWCKQKLGANAILAV SLAVCKAGAHVKGIPLYKHVANLAGNKNLVLPVPAFNVINGGSHAGNKLAMQEFMILPVG ASSFKEAMKMGAEVYHHLKSVIKKKYGQDATNVGDEGGFAPNIQENKEGLELLKTAIAKA GYTGKVVIGMDVAASEFYGSDKTYDLNFKEENNNGSQKISGDVLKDLYKSFVTEYPIVSI EDPFDQDDWEHYAKLTSEIGVKVQIVGDDLLVTNPKRVEKAIKEKACNALLLKVNQIGSV TESIEAVKMSKRAGWGVMASHRSGETEDTFIADLSVGLATGQIKTGAPCRSERLAKYNQL LRIEEELGAEAVYAGANFRTPVEPY >accession|Q9LEI9.1|Putative Enolase 2 (2-phosphoglycerate dehydratase 2) (2-phospho-D-glycerate hydro-lyase 2) (Allergen Hev b 9) [Hevea brasiliensis] ViewEditDelete
820 Malus x domestica Apple Non-specific lipid-transfer protein precursor (LTP) (Allergen Mal d 3) 0014423814 Q9M5X7.1 115 2255, 2377 2009 MASSAVTKLALVVALCMAVSVAHAITCGQVTSSLAPCIGYVRSGGAVPPACCNGIRTING LARTTADRQTACNCLKNLAGSISGVNPNNAAGLPGKCGVNVPYKISTSTNCATVK >accession|Q9M5X7.1|Allergen Non-specific lipid-transfer protein precursor (LTP) (Allergen Mal d 3) [Malus x domestica] ViewEditDelete
826 Anisakis simplex Parasitic fish worm Tropomyosin (Allergen Ani s 3) 0014423976 Q9NAS5.1 284 202, 7744, 7747, 18608, 19169 2007 MDAIKKKMQAMKIEKDNALDRADAAEEKVRQMTDKLERIEEELRDTQKKMMQTENDLDKA QEDLSTANSNLEEKEKKVQEAEAEVAALNRRMTLLEEELERAEERLKLATAKLEEATHTA DESERVRKVMENRSFQDEERANTVESQLKEAQMLAEEADRKYDEVARKLTMVEADLERAE ERAETGENKIVELEEELRVVGNNLKSLEVSEEKALQREDSYEEQIRTVSARLKEAETRAE FAERSVQKLQKEVDRLEDELVHEKERYKSISEELDQTFQELSGY >accession|Q9NAS5.1|Putative Tropomyosin (Allergen Ani s 3) [Anisakis simplex] ViewEditDelete
1,106 Anisakis simplex Parasitic fish worm Paramyosin (Allergen Ani s 2) 0042559536 Q9NJA9.1 869 1126, 19176, 19425, 19427 2009 MSDTLYRSPSMAIRSSTADMGALTSMSVADLGSLTRLEDKIRLLQDDFESERELRNRIER ERADLSVQLIALTDRLQDAECATDSQIESNRKREVELSKLRKLLEESQLENEDAMNVLRK KHQDVCLDYTEQIEQLQKKNSKIDRERQRLQHEVIELTATIDQLQKDKHVAEKMAQKFEQ QTIELSNKVEDLNKHVNDLAQQRQRLQAENSDLLAEIHDQKVQLDNLQHVKYQLAQQLEE SRRRLEDAERERSQMQAQLHQVQLELDSVRVALDEESAARVEAEHKLSLANTEITQWKSK FDAEVALHHEEVEDLRKKMMQKQAEYEEQIEIMLQKVSQLEKAKARLQSEVEVLIVDLEK AQNTIAILERAKEQLEKQVLEMKSRIDELLVELEAAQREARAALAELQKMKQLYEKAVEQ KEALARENKKLQDDLHEANEALADANRKLHELDLENARLAGEIRDLQVALKESEAARRDA EARAQRALAELQQVRIEMERRLQEKEEEMEALRKSMQFEIDRLTAALADAEARMKAEIAR LRKKYQAEIAELEMTVDNLNRANLEAQKTIKKQSEQIIQLQANLEDTQRQLQQTLDQYAL AQRKISALSAELEECKTALDNAIRARKQAEADLEEAHVRISDLTSINSNLTAIKNKLETE LSTAQADLDEVTKELHAADERANRALADAARAVQELHEEQEHSMKIDALRKSLEEQVKQL QVQIQEAEAAALLGGKRVIAKLETRIRDLEVALDEETRRHKETQSALRKKDRRIKEVQMQ IDEEHKMFVMAQDTADRMLEKLNIQKRQLGEAEAMTMQNLQRVRRYQRELEDAEGRADQA ESSLNLIRAKHRGTVAVGKATDVYVVEED >accession|Q9NJA9.1|Putative Paramyosin (Allergen Ani s 2) [Anisakis simplex] ViewEditDelete

Page 103 of 105, showing 20 record(s) out of 2,087 total

2019
Volume 22
Issue 1

Topic:

Biotechnology

ELECTRONIC
JOURNALOF
POLISH
AGRICULTURAL
UNIVERSITIES

Copyright © Wydawnictwo Uniwersytetu Przyrodniczego we Wroclawiu, ISSN 1505-0297

Kobiałka N.

, Mularczyk M. , Kosiorowska K. , Pilarska K. , Łaba W. , Piegza M. , Robak M. 2019. NEW STRAINS OF FILAMENTOUS FUNGI ISOLATED FROM CONSTRUCTION MATERIALS
DOI:10.30825/5.ejpau.169.2019.22.1 , EJPAU 22(1), #02.
Available Online: http://www.ejpau.media.pl/volume22/issue1/art-02.html

Natalia Kobiałka, Malwina Mularczyk, Katarzyna Kosiorowska, Kinga M. Pilarska, Wojciech Łaba, Michał Piegza, Małgorzata Robak
Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Poland

Key words: filamentous fungi, PCR, ITS-region, identification, construction materials.

Filamentous fungi are a large group of eukaryotic organisms capable to growth in a variety of environmental niches. Their growth could be either beneficial to humans, as in case of ripped cheeses production, citric acid and enzymes biosynthesis, or detrimental mainly due to the production of mycotoxins and deterioration of utility objects.

Biodeterioration, also known as microbial corrosion, is a complicated and energy-consuming process in which microorganisms, mainly filamentous fungi, decompose various materials. It is associated with the loss of mechanical properties, crumbling and discoloration, leading to eventual degradation of materials [9, 26].

This process is often accompanied by odor formation, that originates from volatile compounds, such as sesquiterpens and hydrogen sulfide [29]. Every materials, both organic and mineral, used in construction are susceptible to microbial corrosion, being a result of chemical and mechanical action of microbial cells and their metabolites on porous structures of these objects [10, 15].

Filamentous fungi in buildings are most commonly found in corners of outer walls, shut to floors or ceilings, in basements, ceiling slabs, near doors and windows, at points specifically called “thermal bridges” [8].

What is a penicillium allergy

Their presence is also common in specific housing conditions and frequently depends on the weather season [1]. The greatest damage in construction is caused by filamentous fungi that attack wood of every deciduous and coniferous species. These fungi exhibit enzymatic potential to decompose cellulose and hemicellulose, while leaving lignin intact [22]. The most commonly occurring species in Europe is Serpula lacrymans, known as the home fungus [8, 21]. It frequently occurs on wood ceilings, wall paneling, frames and floor elements. It belongs to most harmful fungi, that after 6 months is capable of causing the 50% loss of wood dry mass, and residual mechanical strength at 3% of that typical for unused wood.

It does not happen exterior buildings, as it is sensitive to sunlight and airflow. Another abundant building-associated fungus is Coniophora puteana, known as the cellar fungus. It is often found on humid and shaded parts of buildings, love basements, ceilings, window and door frames, floors and sanitary fittings [5, 12, 14]. Poria vaporaria is another example of home fungus of significant wood-degradative abilities, comparable to the previous examples, but incapable of quick propagation. It typically occurs in wood that has a contact with ground or in humid wooden ceilings.

Besides the discussed species of filamentous fungi, building interiors can be colonized by a wide variety of fungi posing a direct threat to human health.

According to the type of the influence, harmful effects can be divided into allergies, mycoses, intoxications with mycotoxins and the so called “sick building syndrome” [3, 15]. These ailments are connected with the production of mycotoxins that exhibit toxic effect, as well as allergenic properties. The presence of fungi can also lead to migraines, irritation of mucosa and gastrointestinal disorders. In terms of mycotoxins biosynthesis, fungi of the genera Aspergillus, Penicillium, Fusarium, Cladosporium and Alternaria are known to be most dangerous [13].

The purpose of the present study was to recognize strains of filamentous fungi occurring on building walls and construction materials at specified locations in Poland, with a special regard for the detection of S.

lacrymans and S. humantiodes. To identify microscopic characterization to the genus and to the species by PCR ITS product sequencing with ITStest fungi and BLAST alignments with specific rDNA fragments available in the Gene Bank Database and Saccharomyces Genome Database were performed.

MATERIALS AND METHODS

The materials used in the study were four samples obtained from interior walls and wooden baseboard in Lower Silesia residential buildings interior walls of unheated cellars of detached houses (Złotniki, Wrocław and Laskówka) designated as NK and basement of a 45-years ancient building (Karłowice, Wrocław) designated as Dyw.

Potato Dextrose Agar (Difco) media was used and more than 3 passages were performed to isolate strains. Finally 19 strains were obtained as pure cultures and identification procedure was performed, based on classical macroscopic and microscopic characterization and on molecular techniques.

Classical identification was performed on pure culture of strains on potato dextrose agar (Difco) after 48–72 hours of growth at 25°C. Macroscopic and microscopic characterization was done by classical observation of colonies and hypha aspects on Petri disches and the presence or absence of specific structures (septa, branches, conidia, ascospores, sporangia, rhizoides,) in microscope slide observation [11].

Molecular identificationwas doneby sequence alignment of highly diverse regions of ITS1 and ITS2 in rDNA clusters. Biomass of pure culture on potato dextrose broth during 48 hours at 25°C was used as source of template for PCR. Isolation of genomic DNA was performed according to a procedure described by Piegza et al. [17]. Three pairs of primers were used: (a) ITS1 and ITS4 universal primers specific for filamentous fungi, (b) ITS1 and SL, (c) ITS1 and SH (Tab. 1). The SL and SH primers are considered as species-specific to identify Serpula lacrymans and S. himantioides, respectively [21].

Primer Sequence
ITS1 (F) 5’-TCCGTAGGTGAACCTGCGG-3’
ITS4 (R) 5’-TCCTCCGCTTATTGATATGC-3’
SL (R) 5’- ATGTTTCTTGCGACAACGAC-3’
SH (R) 5’-TCCCACAACCGAAACAAATC-3’

Bioinformatic confirmation of identification. For 10 strains PCR product of ITS amplification were sequenced and identified with “ITStest fungi” at Centrum Informacji Genetycznych DNAi (Kraków, Poland).

What is a penicillium allergy

Also, sequences of the obtained PCR products were compared with corresponding rDNA fragments available in the GenBank Database (http://www.ncbi.nlm.nih.gov/genbank/).

The procedure of isolation and identification was targeted mainly towards filamentous fungi from genera causing development of brown and white rot. Finally 19 strains were obtained and classified to the genera or species. Based on the microscopic assessment, the isolates were classified to Penicillium and Lecanicillium genera (Tab. 2, Fig. 1). One of isolates (Dyw3) required further purification and finally was identified as Candida yeast.

Sample localisation Isolated strains Morphological identification Fragment ITS1-SL[bp] Fragment ITS1-SH[bp] Fragment ITS1-ITS4 [bp] Size of sequenced fragment by“ITStest fungi” [bp] Size ofITS1[bp] Size ofITS2[bp]
Room wall in Opole region country house NK1 Penicillium 363 561 792 172 463
NK2 Penicillium 544 758 127 477
NK3 Lecanicillium 293 533 772 167 445
Wooden baseboard in Laskówka home (Lower Silesia) Samples Serpula sp.

suspected

NK4 Penicillium 544
NK5 Penicillium 547
NK6 Penicillium 551
NK7 Penicillium 209 551
NK8 Penicillium 551
NK9 Penicillium 541
NK10 Penicillium 554
NK11 Penicillium 556
Cellar wall in Złotniki-Wrocław house NK12 Penicillium 594 724 181 385
Cellar wall in Karłowice-Wrocław house Dyw1b Penicillium 439 558 799 178 462
Dyw2 Penicillium 427 510 792 172 462
Dyw3 Candida 570 693 96 439
Dyw4 Penicillium 411 552 823 189 475
Dyw5b Penicillium 419 235 550 798 178 466
Dyw6 Penicillium 539 797 172 467
Dyw7 Penicillium 532 799 177 463

The first step of molecular identification of isolates (by sequence homology of highly diverse regions of ITS1 and ITS2) involved the presence of fragments specific for the genus Serpula, notably S.

lacrymans and S. hymantioides, because thisgenus was suspected to happen in the taken samples (Fig. 2).In PCR with S. lacrymans specific primer (SL), paired with ITS1, single product was obtained for five isolates: NK1 – 363 bp, Dyw1b – 439 bp, Dyw2 – 427 bp, Dyw4 – 411 bp and Dyw5b – 419 bp (results not shown). However, the length of the rDNA product amplified with ITS1 – SL primers for S. lacrymans is 586 bp. So, none of isolated strains belong to S. lacrymans species, which excluded further speculation on its presence in collected deteriorated materials.

Analogous results were achieved with the SH primer specific for S. hymanoides. Amplification products were obtained for only 3 of 18 isolates. The length of product for NK3 isolate was 293 bp, while for isolates NK7 and Dyw5b it was 209 bp and 235 bp, respectively (results not shown). Despite the occurrence of the products, none of the isolates was identified as S.

What is a penicillium allergy

himantioides, as the length of the products with primers pair ITS1-SH should be 429 bp.

Since the isolation of S. lacrymans and S. humantiodes was unsuccessful, further PCR with primers ITS1-ITS4 was conducted (Fig. 2) and combined with macroscopic and microscopic evaluation suggested that most of the obtained isolates belonged to the genus Penicillium (NK1, NK2, NK4–NK12, Dyw1b, Dyw2, Dyw4–Dyw6, Dyw7). Nevertheless, Lecanicillium (NK3) and Candida (Dyw3) were also present. The PCR with ITS1–ITS4 primers demonstrated the presence of two amplification products for part of the tested Penicillium isolates (NK2–NK5 and NK8–NK9).

Little products, of approximately 300 bp visible in the Figure 3 for some strains, probably were the results of amplification of mitochondrial DNA.

The length of ITS1-ITS4 rDNA products obtained for the isolates morphologically assigned to the genus Penicillium varied in the range from 541 bp to 594 bp. After comparison of the size of this rDNA fragments of 84 Penicillium species acquired from the GenBank database and those obtained for isolated Penicillium strains, it was established that the length of the obtained PCR products was shut to those of P.

citrinum, P. sartoryi and P. chrysogenum.

In order to verify the correctness of the assignment isolates to genus and species, for ten selected strains the “ITStest fungi” was used, which is based on the sequence evaluation of ITS1-ITS2 fragments. High homology of the obtained sequences to representants of Penicillium genus, confirmed minimal differences between species. After alignment of the sequence from Dyw1b, Dyw4, Dyw 5b, Dyw 6, Dyw7, NK1 and NK2 to P. chrysogenum sequence a high similarity was shown (Fig.

3).Although more than 100 sequences identical to NK1 were found in NCBI resources for Penicillium strains.

The conserved region of 5.8S rRNA was present in every sequences fragments (Fig. 4). Whole sequence has 157 nucleotides, as the human one and only 43 nucleotides are diverse. C. albicans sequence of 5.8S rRNA differ by 11 nucleotides from filamentous fungi and of L. lecanii only by 5 nucleotides from Penicillium sequence.

For the NK3 isolate the sequencing of PCR product finally allowed to identified it as Lecanicillium lecanii.

Specially for alignment of nucleotides observed at specific positions (Fig. 2) The same sequence was found in Genbank (NCBI) for L. lecanii strain ARSEF No. 6543 (Id: EF026005).

For the NK12 isolate, that could not be clearly identified by microscopic and morphological characteristics, the PCR product length was 594 bp and the sequenced product in ITStest fungi had 724 bp and was extremely similar in sequence to Penicillium fragments. The most significant similarity (99%) was found to P.

griseoroseum IF 2SW-F2fragment (ID: KY218687.1). On the basis of sequence comparison, the isolate Dyw3 was assigned to the yeast species Candida albicans SC5314-PO (ID: CPO25165.1) with 100% homology.

Filamentous fungi pose a significant threat to residential and inventory buildings, not only because of deterioration of construction elements, but also due to the negative influence on human health. In the study, isolation of filamentous fungi colonizing building interiors in Lower Silesia region was conducted, followed by their identification. Despite the choice of wood deterioration places described as specific for the development of Serpula species, mainly S.

lacrymans and S. himantoides, none of isolated strains belong to these species.

The initial morphology-based identification of the obtained isolates allowed to assign most of the strains to specific genera. From among 19 isolates, 17 were classified as Penicllium, and the remaining were presumably Lecanicillium and Candida. Every strains were tested according to methodology described by Pilarska et al.

[19] for the ability to biosynthesis extracellular hydrolases. The results revealed a wide spectrum of enzymatic activities, which confirmed that strains belonging to Penicillium genus were not identical. It is surprising that despite the diverse location of samples sources, the predominance of Penicillium isolates was observed. Benammar et al. [2] confirmed that in diverse location, specifically a public bath in Algieria, the presence of fungal genera is extremely similar and the dominant one is Penicillium. They also indicated the presence of Aspergillus, Mucor, Alternaria and Fusarium [2]. According to Pottier et al.

What is a penicillium allergy

[20] among moulds isolated from wood, grout plastic and wallpaper, the most frequently occurring species represented following genera: AspergillusCladosporium, Penicillium, but also Rhizopus,Chaetomium and Trichoderma. Comparable results were obtained in the research of Nabrdalik and Latała [13], who inquired filamentous fungi colonizing building objects in Opole city, in Poland. They confirmed that the dominating fungal microflora comprised following genera: Aspergillus (37.11%), Cladosporium (28.15%) and Acremonium (27.34%). The genera Penicillium and Paecilomyces represented a lesser part, 3.64% and 3.03%, respectively, while Alternaria, Stachybotrys and Scopulariopsis occurred at the level under 1%.

Fungi from genera Mucor and Rhizopus were not isolated. In this study 89% of strains were assigned to Penicillium and none to Aspergillus, which is surprising. Among the genus Penicillium, following species were isolated: P. griseoroseum and P. chrysogenum. Nabrdalik and Latała [13], as well as Pottier et al. [20], described the most frequently observed species among Penicillium as: P. notatum, P. chrysogenum, P. brevicompactum, P. corylophilum and P. fellutanum.

The attempt of molecular differentiation of fungal isolates obtained in our study, based on the length of the PCR fragment, located between genes of little and large subunit of ribosome, was partially successful.

Using species-specific primers, the absence of S. lacrymans and S. himantoides was confirmed. However some similarity in sequence of starters was detected by the presence of products for five isolates (NK1 – 363 bp, Dyw1b – 439 bp, Dyw2 – 427 bp, Dyw4 – 411 bp and Dyw5b – 419 bp) and 3 isolates (NK3-293 bp, NK7- 209 bp and Dyw5b- 235 bp), for S. lacrymans and S. himantioides, respectively.

Supplementary application of the ITS1-ITS2 analysis for part of the strains allowed to partially succeed in the identification.

Non-coding DNA regions of rDNA, especially ITS1 and ITS2 regions, are far more divergent than 18S rRNA, 26SrRNA and 5.8S rRNA sequences, hence their use in the taxonomic studies of filamentous fungi is common [4]. The length of the ITS1-ITS4 fragments, obtained in PCR for some strains, was of two sizes: a little product of approximately 300 bp and a large product within a range between 533 bp and 594 bp. The identification was performed with honor to the larger product. The presence of smaller product was intriguing, but observed in previous research on Geotricum sp. [18] and Penicillium [25]. The larger product length of the ITS1-ITS2 region in fungi ranges from 450 to 700 bp [2].

For the fungi morphologically classified as Penicillium, the length of the large product was between 541 bp and 594 bp and the conserved region of 5.8S rRNA (157 nucleotides) was present in every sequence fragments. Skouboe et al. [25] and Tuthil et al. [26] in a PCR reaction with ITS1 and ITS2 primers, obtained products of approximately 600 bp for diverse Penicillium species. In our studies, the products were characterized by smaller size because of the application of the ITS4 primer instead of the ITS2.

In the 90-s a large-scale project was run in order to sequence rDNA genes of every known species of Penicillium [16]. The ITS region of these fungi is insufficiently variable, therefore ineffective in differentiation of closely related species [7, 23–25]. The GenBank Database hosts a number of improperly identified sequences, which results in difficulties in the identification of Penicillium species with the BLAST tool [27]. Due to the limitations of the ITS region application as a species-specific marker of the genus Penicillium, an additional marker is required.

Also Vu et al. [28] noticed that 18–19% of fungal strains could not be identified by ITS1-5.8S and D1/D2 region of 26S rRNA sequences and thresholds predicted for identi?cation at the genus levels were 94.3% (based on ITS) and 98.2% (based on D1/D2 region of 26S rRNA).

Visagie et al. [27] put forward the beta-tubulin (BenA) marker, as most convenient for secondary identification of Penicillium, however, this does not permit do determine several species with identical BenA sequence, i.e. P. camemberti, P. caseifulvum and P. commune. As an alternative to the BenA marker, Visagie et al. [27] propose the application of markers based on the gene of either calmodulin (CaM) or the largest subunit of polymerase II (RPB2).

Both genes exhibit a comparable applicability for the identification to BenA gene, however, sequences in databases are incomplete in this regard. Therefore, for the task of routine identification it is recommended to use every four markers (ITS, BenA, CaM and RPB2). During characterization of new fungal isolates it is a excellent practice to submit into databases at least sequences of ITS and BenA, to permit for an effective identification [27]. However identification by ITSTest fungi in some case was sufficient. The most attractive isolate obtained in this study was NK3 identified by ITSTest as Lecanicillium lecanii, aspecies known as insect pathogen [6].

Fungal isolates in the number of 19 were isolated from construction materials.

Most of the strains were identified to the genus level based on morphological features and molecular analysis of rDNA. Analyzing the length of the ITS region, a part of the Penicillium isolates were identified as P. chrysogenum, according to the “ITSTest fungi”. Three strains were classified at the specieslevel: Lecanicillium lecanii (NK3), P. griseoroseum (NK12)and Candida albicans (Dyw3).

This work was partially supported by Wrocław Centre of Biotechnology, programme The Leading National Research Centre (KNOW) for years 2014–2018.

Work partially realized in the framework of the Biotechnology Students Circle at Wrocław University of Environmental and Life Sciences in Wrocław

  • Visagie C.M., Houbraken J., Frisvad J.C., Hong S.B., Klaassen C.H.W., Perrone G., Seifert K.A., Varga J., Yaguchi T., Samson R.A., 2014. Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343–371.

    What is a penicillium allergy

    DOI:10.1016/j.simyco.2014.09.001

  • Schmidt O., Huckfeldt T., 2011. Characteristic and identification of indoor wood-decaying basidiomycetes in Adan O.C.G., Samson R.A. (ed.) Fundamentals of mold growth in indoor environments and strategies for healthy living. Wageningen Academic Publishers. Wageningen. Holandia, 117–180.
  • Górny R.L., Cyprowski M., Gołofit-Szymczak M., Ławniczek-Wałczyk A., 2010. Biodeterioracja materiałów konstrukcyjnych i wykończeniowych [Construction and finishing material biodeterioration] [in:] Górny R.L.

    (ed.) Zniszczenia wodne budynków i ich korozja mikrobiologiczna. Przyczyny, zagrożenia, prewencja i remediacja. CIOP-PIB. Warszawa [in Polish].

  • Vu D., Groenewald M., de Vries M., Gehrmann T., Stielow B., Eberhardt U., Al-Hatmi A., Groenewald J.Z., Cardinali G., Houbraken J., Boekhout T., Crous P.W., Robert V.,Verkle G.J.M., 2019. Large-scale generation and analysis of ?lamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholdsfor fungal species and higher taxon delimitation.

    Studies in Mycology, 92, 1–20. Available online 30 May 2018; https://doi.org/10.1016/j.simyco.2018.05.001.

  • Aringoli E.E., Basílico M.d.l.L.Z., Altahus R.L., Basílico J.C., 2008. Multivariate analysis of fungal associations in the indoor air of Argentinean houses.International Biodeterioration & Biodegradation, 62(3), 281–286.
  • Papciak D., Zamorska J., 2007. Korozja mikrobiologiczna w budynkach powodowana przez grzyby [Microbiologically corossion in buildings caused by fungi] Z.N.

    Politech. Rzesz. Budow. i Inżyn. Środ., 46, 87–99 [in Polish].

  • Horbik D., 2013. Biodeterioracja a trwałość elewacji obiektów budowlanych oróżnym przeznaczeniu. [Biodeterioracja and the durability of the buildings façade of diverse purposes] Politechnika Poznańska Wydział Budownictwa iInżynierii Środowiska. Rozprawa doktorska. Poznań [in Polish].
  • Humber R.A., 1997. Fungi: Identification, Chapter V-1 [in:] Manual of Techniques in Insect Pathology, (ed). Lacey L. A. Academic Press, Elsevier, DOI.org/10.1016/B978-0-12-432555-5.X5000-3
  • Gutarowska B., Piotrowska M., Koziróg A., Żakowska Z., 2010.

    Ochrona przed mikrobiologiczną biodeterioracją w muzealnictwie. [Protection against microbial biodeterioracja in museums] Krajowa Konferencja Rola Nauki w Zachowaniu Dziedzictwa Kulturowego, Łódź. 15–19 [in Polish].

  • Nerg A.-M., Heijari J., Noldt U., Viitanen H., Vuorinen M., Kainulainen P., Holopainen K., 2004. Significance of wood terpenoids in the resistance of Scots pine provenances against the ancient home borer, Hylotrupes bajulus and brown-rot fungus, Coniophora puteana.

    J. Chem. Ecol., 30(1), 125–141. DOI:10.1023/B:JOEC.0000013186.75496.68

  • Tuthill D.E., Frisvad J.C., Christensen M., 2001. Systematics Penicillium simplicissimum based on rDNA sequences, morphology and secondary metabolites. Mycologia, 93(2), 298–308. DOI:10.2307/3761651
  • Piegza M., Rząsa J., Siepka E., Witkowska D., 2010. Use and comparison of molecular and classical methods for the identification of moulds isolated from the soil. Acta Sci. Pol. Biotechnol., 9(4), 3–16.
  • Skouboe P., Frisvad J.C., Taylor J.W., Lauritsen D., Boysen M., Rossen L., 1999.

    Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycol. Res., 103(7), 873–888.

  • Piegza M., Barszczewski W., Juszczyk P., Wojtatowicz M., Robak M., 2011. Porównanie metod ekstrakcji DNA z komórek różnych gatunków drożdży. [Comparison of DNA extraction methods from cells of diverse yeasts species] Acta Sci. Pol. Biotechnol., 10 (1), 29–38 [in Polish].
  • Bruns T.D., White T.J., Taylor J.W., 1991. Fungal molecular systematic.

    Annual Review of Ecological Systematics, 22, 525–564.

  • Korpi A., Pasanen A.-L., Viitanen H., 1999. Volatile metabolites of Serpula lacrymans, Coniophora puteana, Poria placenta,Stachybotrys chartarum and Chaetomium globosum. Build. Environ., 34, 205–211.
  • Schmidt O., Moreth U., 2000. Species-specific PCR primers in the rDNA region as a diagnostic tool for Serpula lacrymans. Mycol. Res., 14(1), 69–72.
  • Peterson S.W., 1993. Molecular genetic assessment of relatedness of Penicillium subgenus Penicillium.

    in Reynolds D.R., Taylor J.W. (ed.) The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. CAB International. Wallingford, 121–128.

  • Pilarska K.M., Kosiorowska K., Kobiałka N., Łaba W., Piegza M., Robak M., 2017. Aktywność enzymatyczna grzybów pleśniowych izolowanych z siedzib ludzkich [Enzymatic activity of filamentous fungi isolated from human residences] Acta Sci.

    What is a penicillium allergy

    Pol. Biotechnol., 16 (2), 19–30 [in Polish].

  • Bellemain E., Carlsen T., Brochmann Ch., Coissac E., Taberlet P., Kauserud H., 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol., 10(189), 1–9. DOI: 10.1186/1471-2180-10-189
  • Faria M.R., Wraight S.P., 2007. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control, 43, 237–256. DOI:10.1016/j.biocontrol.2007.08.001
  • Seifert K.A., Samson R.A., deWaard J.R., Houbraken J., Levesque C.A., Moncalvo J.M., Louis-Seize G., Hebert P.D.N., 2007.

    Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proceedings of the National Academy of Sciences of USA, 104, 3901–3906. DOI:10.1073/pnas.0611691104

  • Benammar L., Mebasria T., Chergui A., Benfiala S., Ayachi A., 2017. Indoor fungal contamination of traditional public baths (Hammams). International Biodeterioration & Biodegradation, 117, 115–122. DOI:10.1016/j.ibiod.2016.12.004
  • Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., 2012. Fungal Barcoding Consortium.

    Nuclear ribosomal internal transcriber spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of USA. 109, 6241–6246. DOI:10.1073/pnas.1117018109

  • Geiser D.M., Harbinski F.M., Taylor J.W., 2000. Molecular and analytical tools for characterizing Aspergillus and Penicillium species at the intra- and interspecific levels in Samson R.A., Pitt J.I. (ed.) Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification. Harwood Academic Publishers. Amsterdam, 381–396.
  • Pottier D., Andre V., Rioult J.P., Borreau A., Duhamel Ch., Bouchart V.K., Richard E., Guibert M., Verite P., Garon D., 2014.

    Airborne molds and mycotoxins in Serpula lacrymans-damaged homes. Atmos. Poll. Res., 5, 325–334. DOI:10.5094/APR.2014.038

  • Charkowska A., Mijakowski M., Sowa J., 2005. Wilgoć, pleśnie i grzyby wbudynkach [Moisture, mold and fungi in buildings] Wydawnictwo Verlag Dashfer, Warszawa [in Polish].
  • Nabrdalik M., Latała A., 2003. Występowanie grzybów strzępkowych w obiektach budowlanych [The presence of filamentous fungi in the construction] Roczniki PZH, 54(1), 119–127 [in Polish].

  • Watkinson S. C., Eastwood D. C., 2012. Serpula lacrymans, Wood and Buildings. Advances in Applied Microbiology, 78, 121–149.

Accepted for print: 25.02.2019


Natalia Kobiałka
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland

Malwina Mularczyk
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland

Katarzyna Kosiorowska
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland

Kinga M.

Pilarska
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland

Wojciech Łaba
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland

Michał Piegza
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
phone +48 71 320 7737
fax +48 71 320 7794
51-630 Wrocław
Poland
email: [email protected]

Małgorzata Robak
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland
email: [email protected]



Accepted for print: 25.02.2019


Natalia Kobiałka
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland

Malwina Mularczyk
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland

Katarzyna Kosiorowska
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland

Kinga M.

Pilarska
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland

Wojciech Łaba
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland

Michał Piegza
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
phone +48 71 320 7737
fax +48 71 320 7794
51-630 Wrocław
Poland
email: [email protected]

Małgorzata Robak
Department of Biotechnology and Food Microbiology,
Wrocław University of Environmental and Life Sciences, Poland
Chełmońskiego 37/41
51-630 Wrocław
Poland
email: [email protected]





Part Description

LP19195-4 Penicillium sp
Test to detect allergy to Penicillium notatum(also known as Penicillium chrysogenum), the allergen code is m1.

Penicillium is the blue-green mold that forms on stale bread, cheese, and other foods and is used in the production of green and blue mold cheese. Penicillium is one of the molds most often producing positive skin test reactions in allergic patients. P notatum is one of the most common species of Penicillium. Penicillium molds prefer damp, dark places, but will also grow elsewhere. Penicillium colonies are rapidly growing, flat, filamentous, and velvety, woolly, or cottony in texture.

11 allergenic components own been identified in P notatum, the major allergen being a 68kDa protein recognized by IgE antibodies in about half the patients. Hypersensitivity to the penicillium mold has no relationship to hypersensitivity to the antibiotic Penicillin. Copyright Copyright © 2006 Phadia AB.Source: ImmunoCap

Testing for IgE antibodies may be useful to establish the diagnosis of an allergic disease and to define the allergens responsible for eliciting signs and symptoms.

What is a penicillium allergy

Testing also may be useful to identify allergens which may be responsible for allergic disease and/or anaphylactic episode, to confirm sensitization to specific allergens prior to beginning immunotherapy, and to investigate the specificity of allergic reactions to insect venom allergens, drugs, or chemical allergens.

Clinical manifestations of immediate hypersensitivity (allergic) diseases are caused by the release of proinflammatory mediators (histamine, leukotrienes, and prostaglandins) from immunoglobulin E (IgE)-sensitized effector cells (mast cells and basophils) when cell-bound IgE antibodies interact with allergen.

In vitro serum testing for IgE antibodies provides an indication of the immune response to allergen(s) that may be associated with allergic disease.

The allergens chosen for testing often depend upon the age of the patient, history of allergen exposure, season of the year, and clinical manifestations.

In individuals predisposed to develop allergic disease(s), the sequence of sensitization and clinical manifestations proceed as follows: eczema and respiratory disease (rhinitis and bronchospasm) in infants and children less than 5 years due to food sensitivity (milk, egg, soy, and wheat proteins) followed by respiratory disease (rhinitis and asthma) in older children and adults due to sensitivity to inhalant allergens (dust mite, mold, and pollen inhalants).

Detection of IgE antibodies in serum (Class 1 or greater) indicates an increased likelihood of allergic disease as opposed to other etiologies and defines the allergens that may be responsible for eliciting signs and symptoms.

The level of IgE antibodies in serum varies directly with the concentration of IgE antibodies expressed as a class score or kU/L.

Testing for IgE antibodies is not useful in patients previously treated with immunotherapy to determine if residual clinical sensitivity exists, or in patients in whom the medical management does not depend upon identification of allergen specificity.

Some individuals with clinically insignificant sensitivity to allergens may own measurable levels of IgE antibodies in serum, and results must be interpreted in the clinical context.

False-positive results for IgE antibodies may happen in patients with markedly elevated serum IgE (>2,500 kU/L) due to nonspecific binding to allergen solid phases.

Homburger HA: Chapter 53: Allergic diseases.

In Clinical Diagnosis and Management by Laboratory Methods. 21st edition. Edited by RA McPherson, MR Pincus. WB Saunders Company, New York, 2007, Part VI, pp 961-971


RELATED VIDEO: